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The isotope-induced ferroelectricity observed in SrTi18O3 �STO18� enables a systematic study of the cross-
over between quantum paraelectricity and ferroelectricity as a function of x in SrTi16O1−x

18Ox

�STO161−xSTO18x�. We predict that all ferroelectric compounds have a finite transition temperature Tc and
show a dimensionality crossover from d=3 to d=4 at sufficiently low temperature. A discontinuity in behavior
takes place around x=0.35, where quantum fluctuations suppress the transition. No evidence is found for a
quantum critical point in the phase diagram. The high temperature structural transition shows a substantial
isotope dependence which is, however, less striking than for the ferroelectric transition.
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SrTi16O3 has been known for more than 50 years and is
one of the best investigated perovskite oxides. Around Ts
=105 K a structural instability takes place which is accom-
panied by the freezing of a zone-boundary mode.1,2 Simulta-
neously, a long-wavelength optic mode decreases in energy
and is reminiscent of a ferroelectric instability.3 An extrapo-
lation of its frequency to zero suggests a ferroelectric phase-
transition temperature of Tc=17 K. This instability does not
take place, however, since quantum fluctuations set in and
dominate the low-temperature dynamical properties. In this
regime, temperature is an inappropriate parameter for a
phase diagram and the dielectric properties. As a conse-
quence the system was termed a “quantum paraelectric.”4 An
analogous behavior is observed in KTaO3 �Ref. 5� and
CaTiO3.6 In all these compounds ferroelectricity can be in-
duced by sufficient doping. In SrTi16O3 �STO16� Ca doping
leads to finite values of Tc, and an interesting crossover from
a XY n=2 quantum ferroelectric to a random field-induced
domain state takes place with increased Ca doping.7 Another
route to inducing ferroelectricity in STO16 has recently been
realized by replacing 16O by its isotope 18O.8 Here, the in-
stability takes place at Tc=24 K and both phases, the ferro-
electric and the paraelectric ones, have subsequently been
investigated in detail.9 While long-wavelength probes such
as Raman scattering or infrared studies provide evidence
for a purely displacive transition with perfect mode
softening,10,11 local probes such as NMR or EPR support an
order/disorder-driven phase transition.12 That both dynamics
can coexist has been shown theoretically, and this can re-
solve the apparent experimental controversy.13 The higher
temperature structural phase transition has been the focus of
detailed experimental investigations, since it was early sug-
gested that also here order/disorder and displacive dynamics
accompany this instability.14–16 In particular, a two compo-
nent approach was developed, since a central peak emerges
upon approaching Ts which increases in intensity with de-
creasing temperature.15,16 An explanation of this observation
has been given in terms of intrinsic or quenched defects,17,18

intrinsic effects, and quasistatic domains,19,20 and recently
been shown to be intrinsic.11

In the following, we primarily concentrate on the
x-dependent phase diagram of STO161−xSTO18x, which of-

fers a unique opportunity to investigate the crossover to
quantum paraelectric behavior and dimensionality crossover
within the same system, and where doping induced changes
of the lattice potential and dynamics can be ruled out. The
quantum limit of phase transitions has been intensively stud-
ied by various approaches. Oppermann and Thomas21 stud-
ied the critical behavior in the displacive limit for a �4
model and predicted a change in the scaling relations in the
quantum regime. Schneider et al.22 investigated this limit
within a n-component vector model for structural phase tran-
sitions and observed that the leading exponent � of the di-
electric susceptibility changes from �=1 to �=2. A dimen-
sionality crossover has been found by renormalization-group
theory,23 where quantum fluctuations enhance the system’s
effective dimension and give rise to new critical exponents,
with the �=2 quantum paraelectric limit exhibiting addi-
tional logarithmic corrections. Scaling properties in the
quantum limit have been investigated for the case of quan-
tum paraelectric solid solutions of SrTiO3:Ca, where both
the displacive and the order-disorder limit have been
considered.24 In the displacive limit the phenomenological
Barrett formula25 has been recovered which yields, however,
a much poorer agreement with experimental data for STO16
�Ref. 4� than the analysis within the polarizability model.26,27

A very different examination of the quantum phase transition
has been given by Rubtsov and Janssen,28 who studied the
discrete �4 model in two dimension �2D� and three dimen-
sion �3D�. They found that the transition can be changed
continuously from soft mode to the transverse Ising behavior
by varying the model parameters. Experimentally, the quan-
tum regime has been studied in detail in KTa1−xNbxO3 and
K1−yNayTaO3 and been interpreted within the polarizability
model.29 In these doped compounds the crossover from �
=1 �classical regime� to �=2 �quantum regime� could be
well established. More recently a variety of studies on doped
perovskites have been performed concentrating on the quan-
tum critical regime.30,31

In addition to this low-temperature regime, we also inves-
tigate the isotope dependence of the structural instability.
Since this is driven by the polarizability13 of the long-
wavelength soft mode, an isotope effect is present here as
well which is absent in conventional �4 theories.
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Here, we use a polarizability model11,13,27,32 to study the
phase diagram of STO161−xSTO18x, where nonlinear
electron-ion interactions represent essential charge-transfer
hybridizations of oxygen p and transition-metal d orbitals.
These hybridizations experience a redistribution32 with de-
creasing temperature and trigger the phase transition. The
model Hamiltonian is given by

H =
1

2�
n
�M1nu̇1n

2 + m2u̇2n
2 + f��u1n+1 − u1n�2 + f�v1n − u2n�2

+ f�v1n+1 − u2n�2 + g2w1n
2 +

1

2
g4w1n

4 � . �1�

The first two terms are the ionic core kinetic energies for
ionic masses M1�TiO3� and m2�Sr� with site n dependent
displacement coordinates uin, i=1,2. The polarizability coor-
dinate w1n=v1n−u1n is the relative displacement between the
shell and core of the polarizable unit TiO3. f , f� are harmonic
nearest- and second-nearest-neighbor coupling constants;
g2 ,g4 define the local double-well potential in the polariz-
ability, since g2�0,g4�0. The model parameters are the
same as in Refs. 11 and 13 with the same oxygen ion mass
renormalization as used in Refs. 11 and 13. The variation of
M1�TiO3� with x is simply linear as in our previous work and
shown in Fig. 1. The nonlinear term is treated within the
self-consistent phonon approximation �SPA� corresponding
to a cumulant expansion in w, whereby an effectively har-
monic but temperature dependent local coupling constant gT
is defined

gT = g2 + 3g4�w2�T, �w2�T = �
q,j

�

2N�q,j
w1n

2 �q, j�coth
��q,j

2kT
.

�2�

In this approach, the dynamical information enters through
the branch j and momentum q dependent eigenvalues. For
the numerical calculation the summation in Eq. �2� is re-
placed by its integral where a three-dimensional integration

in momentum space is carried through guaranteeing that an
instability takes place. The three-dimensional integration ap-
proximates the phonon mode dispersion by an isotropic one.
That this treatment is equivalent to the full 3D calculation
has been established in a variety of work where quantitative
agreement between both approaches has been
demonstrated.4,11,26,27 Note that in Ref. 4 the 3D model cal-
culations are compared to experiment whereas the same
results are obtained in Ref. 11 from the pseudo-one-
dimensional �1D� analog. Similar agreement between both
approaches is seen by comparing the calculated soft-mode
frequencies of Refs. 26, 27, and 33. The current approach
has, however, the advantage that it is parameter free as com-
pared to its 3D analog and thus becomes highly transparent.
In addition, the correctness of the numerical results can be
readily tested analytically in the long-wavelength and the
zone-boundary limits. The transition temperature is given by
the condition gT=Tc

=0. This limit corresponds to a long-
wavelength displacive phase transition, but at finite momen-
tum optic-acoustic mode-mode coupling sets in which in-
duces dynamical finite-size clusters13 obeying different time
and length scales than the soft mode. We conclude that, even
in nominally purely displacive systems, order/disorder and
displacive dynamics coexist. By using previously established
values of the model parameters,11 which were derived self-
consistently, the transition temperatures Tc and Ts have been
calculated �for the calculation of the structural instability as a
function of 18O content x the second-nearest-neighbor cou-
pling has been changed to negative values,13 but kept the
same for all x� and are shown in Figs. 1�a� and 1�b�. It is
important to note that no parameter has been changed and
only the sublattice mass M1 has been varied as described
above.

In Fig. 1�a� the points where Tc is zero are those where
quantum fluctuations suppress the instability. Note that in
both Figs. 1�a� and 1�b� neither Tc nor Ts can be further
enhanced by artificially enhancing M1; they have reached
their maximum values. This means that saturation of both Tc
and Ts is achieved in the fully isotope replaced system. Also,
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FIG. 1. �Color online� �a� x dependence of the ferroelectric phase-transition temperature Tc in STO161−xSTO18x. The squares for x
�0.35 do not refer to Tc=0 K, but indicate that quantum fluctuations suppress the ferroelectric instability. �b� x dependence of the structural
phase-transition temperature Ts in STO161−xSTO18x. The stars are results from the model calculation, the line is a guide to the eye.
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the x dependence of each transition temperatures is very dif-
ferent: Tc shows a nonlinear dependence on x, whereas Ts
increases almost linearly. In both case, however, the transi-
tion temperature does not follow a 1 /�M1 dependence. The
observation of the linear dependence of Ts on x is a conse-
quence of the fact that, at elevated temperatures, the polariz-
ability coordinate �w2�T obeys a different power-law depen-
dence on temperature than in the low-temperature regime,
consistent with results obtained in Ref. 29. Similarly the two
modes which drive the two phase transitions have a very
different temperature dependence in the vicinity of the re-
spective transition temperatures. The squared zone-boundary
mode frequency �s

2 is shown in Fig. 2 as a function of x.
For all x a linear temperature dependence is observed

where only the gradient decreases with increasing x. Such a
behavior is typical for mean-field type phase transitions in
spite of the fact that this transition is driven by polarizability
effects. This behavior is in strong contrast to the low-

temperature dependence of the ferroelectric mode shown in
Fig. 3.

First, we note that the x dependent modes are not shifted
in parallel with increasing x. Second, for all values of x, � f

2 is
nonlinearly dependent on temperature. Third, a distinctly dif-
ferent temperature dependence is observed for those value of
x where a real instability takes place, as compared to the
quantum paraelectric systems. This can be more clearly vi-
sualized by showing the same data as in Fig. 3 on a logarith-
mic scale �Fig. 4�.

For values of x slightly larger than 0.35, a linear T2 de-
pendence is obeyed which indicates the dimensionality
crossover.23,29 Logarithmic corrections set in with
approaching Tc in accordance with renormalization-group
predictions.23 The onset of the linear T2 dependence shifts to
higher values of T with increasing x, i.e., increasing Tc. Thus
the dimensionality crossover smoothly vanishes when Tc in-
creases. For those compounds where quantum fluctuations
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FIG. 3. �Color online� The squared ferroelectric soft-mode
frequency �F

2 , as a function of temperature and x, in
STO161−xSTO18x.
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FIG. 4. �Color online� Double logarithmic plot of the squared
soft-mode frequency �F

2 , as a function of temperature for different
values of x indicated in the figure, in STO161−xSTO18x.
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FIG. 5. �Color online� Double logarithmic plot of the squared
soft-mode frequency �F

2 , as a function of temperature in STO16
�dash-dotted line� and STO18 �dashed line�. The full lines indicate
the classical and quantum regimes with critical exponent �=1,2
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FIG. 2. �Color online� The squared structural soft-mode fre-
quency �s

2 as a function of temperature for different values of x, as
indicated in the figure, in STO161−xSTO18x.
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suppress the phase transition, a dimensionality crossover re-
gime is again observed for x slightly less than x=0.35, where
�F

2 �T2 throughout a broad temperature regime. This regime
diminishes with decreasing x and is almost lost for STO16,
where the onset temperature is beyond the temperature scale
shown in Fig. 4. However, if increased temperatures are con-
sidered, the �F

2 �T2 regime recovers at higher temperatures
and the crossover from d=4 to d=3 can be clearly observed
�Fig. 5�. For comparison, the results for STO18 are also in-
cluded in the same Fig. 5. The black dashed line in Fig. 4
indicates the crossover from the ferroelectric regime to the
quantum paraelectric one. Note that this line is the T2 limit.
The transition between both regimes is not continuous but of
first order since the limit Tc=0 is never reached: either Tc
remains finite or quantum fluctuations render temperature in-
effective.

To summarize, we have systematically investigated the
isotope dependence of the ferroelectric and structural phase
transitions in STO161−xSTO18x as a function of x. These

transitions show very different x dependences of their re-
spective phase-transition temperatures. While the structural
instability varies almost linearly with x, the ferroelectric in-
stability is observed up to x=0.35 with a finite Tc. For x
�0.35 the transition is suppressed by quantum fluctuations.
The dependence of Tc on x for x�0.35 is nonlinear, as ob-
served experimentally.10 The transition between the quantum
fluctuation dominated and ferroelectric regimes is discon-
tinuous, i.e., there is no evidence for a quantum critical point
where Tc=0. The results are consistent with previous theo-
retical and experimental data,21–23,29 but extend these data
since the crossover regime has been shown to be abrupt and
the connection to the structural instability is provided with
specific predictions for a x dependence of Ts. Since the po-
larizability model has been shown to yield extremely good
agreement with experimental data,4,11,26,27,33 we consider the
results to be of general validity and independent of the spe-
cific investigated compound.
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